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Abstract. Methane emissions across Queensland’s Surat Basin, Australia, result from a mix of activities, including the 10 

production and processing of coal seam gas (CSG). We measured methane concentrations over 1.5 years from two 

monitoring stations established 80 km apart on either side of the main CSG belt located within a study area of 350 × 350 

km2. Coupling bottom-up inventory and inverse modelling approaches, we quantify methane emissions from this area. The 

inventory suggests that the total emission is 173 × 106 kg CH4 yr-1, with grazing cattle contributing about half of that, cattle 

feedlots ∼ 25%, and CSG Processing ∼ 8%. Using the inventory emissions in a forward regional transport model indicates 15 

that the above sources are significant contributors to methane at both monitors. However, the model underestimates 

approximately the highest 15% of the observed methane concentrations, suggesting underestimated or missing emissions. An 

efficient regional Bayesian inverse model is developed, incorporating an hourly source-receptor relationship based on a 

backward-in-time configuration of the forward regional transport model, a posterior sampling scheme, and the hourly 

methane observations. The inferred emissions obtained from one of the inverse model setups that uses a Gaussian prior 20 

whose averages are identical the gridded bottom-up inventory emissions across the domain with an uncertainty of 3% of the 

averages best describes the observed methane. Having only two stations is not adequate at sampling distant source areas of 

the study domain, and this necessitates a small prior uncertainty. This inverse setup yields a total emission that is very 

similar to the total inventory emission. However, in a subdomain covering the CSG development areas, the inferred 

emissions are 33% larger than those from the inventory. 25 
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1 Introduction 

Methane (CH4) is a major greenhouse gas, with a global warming potential 28 times greater than carbon dioxide (CO2) (over 

a 100-year period; IPCC, 2013). It is the second most important anthropogenic greenhouse gas after CO2 in terms of 

radiative forcing. Globally averaged surface CH4 concentrations have increased by almost 160% since pre-industrial times, 30 

from a level of 722 ppb to 1859 ppb in 2018 (WMO, 2018), and this increase has been largely due to changes in 

anthropogenic methane (e.g., IPCC, 2013). Compared to CO2, the atmospheric lifetime of methane is relatively short (∼ 10 

years), which means that the climate impact of methane could diminish rapidly following mitigation actions that reduce its 

emissions.  Being chemically reactive, methane also plays an important role as a precursor to tropospheric ozone, itself a 

greenhouse gas and an air pollutant. Thus, understanding and quantifying methane emissions at various scales is crucial to 35 

studying changes in atmospheric radiative forcing and air quality. 

Globally, a top-down estimate over the period 2000-2012 suggests that agriculture and waste contribute to about 57% of the 

total anthropogenic methane emissions, followed by fossil fuels (gas, oil, coal mining and industry) at 32% (Saunois et al., 

2016). However, a study using measurements of carbon-14 in methane recently showed that nearly all methane from fossil 

sources is anthropogenic, and that fossil fuel methane emissions may be underestimated by up to 40% (Hmiel et al., 2020). 40 

Significant CH4 emissions from conventional and unconventional gas fields have been reported in the scientific literature 

(e.g., Brandt et al., 2014; Schneising et al., 2014; Alvarez et al., 2018). 

In the Australian state of Queensland, since the mid-2000s there has been a rapid growth of the production of coal seam gas 

(CSG), which is virtually pure methane (Towler et al., 2016; DNRM, 2017). CSG, also known as coalbed methane, is 

classed as an unconventional natural gas, typically extracted from coal seams at depths of 200–1000 m. As of 2015-16, 96% 45 

of the gas production in Queensland was CSG, with most of it coming from the Surat Basin (78%, 21187 Mm3) and the rest 

(18%, 4958 Mm3) from the Bowen Basin (DNRM, 2017). With the sharp rise of CSG production, methane emissions from 

the Surat Basin are a focus, for example, through Australia’s CSIRO Gas Industry Social and Environmental Research 

Alliance (GISERA) (https://gisera.csiro.au) research in Air Quality and Greenhouse Gas. The Surat Basin is predominantly 

rural, and methane sources other than CSG include agriculture and coal mining. CSG activities that lead to potential methane 50 

emissions include CSG wells, pumps, pipelines, vents, pneumatic controls, and produced water bodies (see Day et al., 2013).  

The objective of the present paper is to quantify methane emissions from a region of 350 × 350 km2 of Queensland’s side of 

the Surat Basin (Figure 1, covering the area 148° 17’ 43.4”–151° 49’ 30.5” E, 25° 3’ 48.8”–28° 5’ 3.7” S) that encompasses 

the main CSG production and processing areas using both bottom-up and top-down techniques. The former involves 

deriving emissions through a compilation of sources and activity data and application of emission factors. We conducted 55 

concurrent in-situ atmospheric monitoring of methane during July 2015 – December 2016 at two locations 80 km from each 

other. The two stations were setup such that they were on either side of the broad present and projected CSG work area in the 

Surat Basin. These concentration data allow for an independent verification of the bottom-up inventory emissions by using 
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the latter in a forward mesoscale meteorological and transport model and comparing the predicted methane concentrations 

with the data. 60 

A greater focus in the paper is on the formulation of an efficient top-down, or inverse, modelling methodology for regional 

scale (~ 100–1000 km), and its application to quantify CH4 emissions in the Surat Basin. It combines a Bayesian inference 

approach, an hourly-averaged high-resolution backward-in-time construction of the forward mesoscale meteorological and 

transport model, and a posterior probability density function (PDF) sampling scheme. A method to correct for time-lag 

effects in the backward plume methodology is presented. The 1.5 years long hourly methane measurements from the two 65 

stations are combined in a Bayesian calculation to derive a top-down emission distribution. Methane background calculation 

and filtering methodologies are devised. Various Bayesian priors and their uncertainties, including the use of the bottom-up 

emissions to act as a prior, are tested. The inferred top-down CH4 emissions are examined alongside the bottom-up inventory 

emissions for the whole study domain as well as a subdomain containing the CSG activities. We also compare the 

performance of the top-down emissions by comparing the modelled methane concentrations obtained using them with the 70 

observed concentrations. As far as we know, this work is the first in Australia to quantify regional CH4 emissions through 

this top-down approach. 

 

 

Figure 1.  Map of Australia, showing the 350 × 350 km2 study domain (red square) of Queensland’s part of the Surat Basin. The 75 
base relief map is from https://www.mapsland.com/oceania/australia/large-relief-map-of-australia (used under Creative Commons 
Attribution-ShareAlike 3.0 Licence). 
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2 Monitoring and data filtering 

We set up two monitoring stations, namely Ironbark (150° 14’ 37.6” E, 27° 8’ 6.6” S; 226.806 km east, 6995.596 km north 

MGA (Map Grid Australia), Zone 56) and Burncluith (150° 42’ 5.4” E, 26° 34’ 2.4” S; 271.051 km east, 7059.430 km north 80 

MGA, Zone 56), located about 80 km apart on two sides of the main coal seam gas belt of the Surat Basin (Figure 3). The 

selection of the site locations was partly based on a meteorological and dispersion modelling study (Day et al., 2015) that 

suggested that with the prevailing winds from the north-east and south-west quadrants, long-term continuous monitoring of 

greenhouse gas concentrations at these two locations would optimise the size and frequency of detection of methane 

emissions from the broader CSG source region without being unduly impacted by individual sources in the proximity of the 85 

measurement sites. 

Continuous high frequency (∼ 0.3 Hz) measurements of the concentrations of CH4, CO2 and water vapour (and also carbon 

monoxide (CO) at Burncluith) were made at the two sites for about three years with an overlapping period of 1.5 years (July 

2015 to December 2016) using Picarro cavity ring down spectrometers (model G2301 at Ironbark, and G2401 at Burncluith) 

with inlets placed at a height of 10 m. The installations are described by Etheridge et al. (2016). Measured concentrations 90 

(strictly speaking, mole fractions in dry air, also volumetric mixing ratios) from each site can be exactly intercompared due 

to identical calibrations and measurement methodologies. The additional CO measurements at Burncluith are useful in 

detecting combustion sources of CO2 and CH4. Measurement accuracy was better than ± 0.1 ppm for CO2 and ± 1 ppb for 

CH4 (Etheridge et al., 2014). Concurrent meteorological observations included winds measured at 5.8 m AGL (above ground 

level) at Ironbark and at 7.6 m AGL at Burncluith using sonic anemometers. 95 

The Burncluith station was located on a private farm and there were 30–40 cattle in the paddocks next to it. Occasionally, 

under suitable meteorological conditions with the cattle upwind of the inlet, the emissions from the local cattle caused one or 

many sharp peaks in the observed methane signal, typical of a nearby point source. We developed a method which removes 

these sharp, transient peaks but does not alter the underlying signals from the numerous, region-wide feedlots, grazing cattle 

or other sources. This filtering method is described in Supplement S1.1 and, for consistency, was also applied to the data 100 

from Ironbark, although local cattle are less in number and further away at this site. 

Frequently, high methane concentrations at the two sites were observed at night under light wind stable conditions, 

particularly at Burncluith. In spite of being of much practical interest, however, light winds are difficult to represent in a 

mesoscale meteorological and transport model. The causes for that include inadequate physical understanding of light-wind 

processes, flow properties being very sensitive to local topography, and model resolution constraints (Luhar and Hurley, 105 

2012). As a practical measure, we filtered out the nighttime sampling hours for light wind conditions, and this method is 

described in Supplement S1.2. 

Methane emissions due to biomass burning are not part of the bottom-up inventory that we consider in the present modelling 

due to their being sporadic and highly unpredictable. Enhanced levels of CH4 and CO were detected at Burncluith in the 
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course of forest fires in the northern sector of Burncluith and wood-heater operations from the property located in the 110 

proximity of the monitoring station. The observed CO was used to filter out these occasional biomass burning events from 

the measured concentration time series, which is an approach similar to that used by Jeong et al. (2012). Details of the CO 

filter are given in Supplement S1.3. 

The number of data hours after the filtering was 6432 for Ironbark and 4149 for Burncluith (cf. the original, valid number of 

data points of 10938 and 12660, respectively).  Unless stated otherwise, the filtered CH4 data were used for our analysis and 115 

modelling. 

3 Bottom-up emission inventory 

Activity data for the year 2015 were used to develop a bottom-up emission inventory for methane for the Surat Basin. The 

emission inventory covered a domain of 345 × 345 km2 with a spatial resolution of 1 × 1 km2. Standard methodologies were 

generally adopted with data from various State and Federal Government Departments (e.g. (National Pollutant Inventory 120 

(NPI), National Greenhouse and Energy Reporting (NGER), and National Resource Management (NRM)). The bottom-up 

inventory included the following fourteen emission sectors: (1) feedlots, (2) grazing cattle, (3) piggeries, (4) poultry farms, 

(5) power stations, (6) coal mining, (7) CSG processing, (8) CSG production, (9) domestic woodheating, (10) vehicular 

traffic, (11) land-fills, (12) sewage treatment plants, (13) river seepage, and (14) geological seepage. The first four can be 

grouped as agricultural activities. The inventory excluded CH4 emissions from burning of biomass, land clearing, termites, 125 

ground-water wells (that were registered), wetlands, or fuel consumption and any material handling related to mining 

activities. Additional details pertaining to the bottom-up inventory compilation are given in Supplement S2. 

Figure 2 presents the bottom-up inventory emissions attributed to the various sectors in the Surat Basin, with the total 

emissions being 173.2 × 106 kg CH4 yr-1. Grazing cattle has the largest contribution, followed by cattle feedlots and CSG 

processing. We use this emission inventory for our study duration, July 2015–December 2016, with the assumption that any 130 

emission changes from the year 2015 to 2016 were insignificant. It is also assumed that all emissions are invariant with time. 

Although diurnal and seasonal variations for some emissions, viz. wood-heating, traffic, and power plant, are available in the 

raw data used in the inventory, contributions from these emissions are amongst the smallest and, therefore, we averaged 

these emissions over the full year for the purpose of computational efficiency in the modelling conducted here. 

 135 
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Figure 2. Bottom-up methane inventory emissions from the Surat Basin by sector/source; % of the total also shown. The total 
emission is 173.2 × 106 kg CH4 yr-1. 

 

Figure 3a presents the distribution of inventory methane emissions (kg yr-1 gridcell-1) at a grid resolution of 5 × 5 km2 (69 × 140 

69 grid points). There are localised sources as well as extensive, uniformly distributed source areas. The latter are emissions 

due to grazing cattle. These emissions are plotted in Figure 3b in which four different coloured areas are the so-called 

National Resource Management (NRM) regions. In each of these regions the available total number of grazing cattle was 

distributed uniformly, with the total number of grazing cattle in the study area being 1,086,059. There were 235 cattle 

feedlots and Figure 3c shows the distribution of their emissions. These are localised, but distributed throughout the region, 145 

with some located between the two monitoring stations. Two mining source areas are also located between the two 

monitoring stations (Figure 3d). 

The CSG emissions are shown in Figure 3e (processing) and Figure 3f (production). The CSG production emissions are from 

wellhead (separators, wellhead control equipment, maintenance and leaks), combustion (flaring, well head pumps, backup 

generators, and diesel used by vehicles) and pipeline emissions (high point vents on produced water pipelines and pipeline 150 

control equipment) (Day et al., 2013). The CSG processing sources consist of processing facility emissions (control 

equipment, compressor venting, and gas conditioning units), combustion emissions (flaring, plant compressors, backup 

generators, and diesel used by vehicles), and collection and storage of water produced. Emissions from some of the CSG 

sources are continuous while others are intermittent (however, the inventory assumes all CSG emissions are time invariant). 

There were 5 CSG operators with 13 processing facilities and 4628 wells within the study domain. The well numbers 155 
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included CSG producing (∼ 85%) as well as exploration/appraisal/capped wells. Because of insufficient information, 

methane emissions from two of the five operators are not part of the inventory, but it was established that these two operators 

only accounted for about 1.5% of emissions related to CSG activities (which include a total of 256 wells). The biggest 

contributor to the total CSG methane emissions was venting (88%) from processing, followed by flaring (8%) from both 

processing and production. 160 

All major sources considered in the bottom-up emissions, namely grazing cattle, feedlots, CSG processing and production, 

and coal mining, have considerable uncertainty, which arises from uncertainty in both the activity data and emission factors, 

for example their potential temporal variation and how up to date they are with respect to the study period considered. It is 

difficult to calculate the uncertainty accurately, but a rough estimate of the upper bound of uncertainty in each of these 

source emissions is ± 50%. 165 
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Figure 3. Bottom-up methane inventory emissions from the Surat Basin (kg CH4 yr-1 gridbox-1, the grid-box size is 5 × 5 km2). Also 170 
shown are the Ironbark and Burncluith monitoring sites and some towns. (a) All emissions, and those due to (b) grazing cattle, (c) 
cattle feedlots, (d) coal mining, (e) CSG processing, and (f) CSG production. 
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4 Modelling regional methane using the bottom-up inventory 

We use the above inventory emissions in a (forward) regional meteorological and transport model and compare the modelled 

methane with the ambient measurements from the two sites. 175 

4.1 Model setup 

The prognostic mesoscale model used is The Air Pollution Model (TAPM vn4.0.4) developed by CSIRO, which has coupled 

meteorological and dispersion components and which is designed for applications ranging in scale from local to regional (~ 

< 1000 km) (Hurley et al., 2005; Hurley and Luhar, 2009). The model has previously been applied to a variety of dispersion 

problems, such as those reported by Luhar and Hurley (2003), Luhar et al. (2008), Luhar and Hurley (2012) and Matthaios et 180 

al. (2017). 

TAPM can be used in a one-way nestable mode. The global databases input to the model include land use, terrain height, 

leaf-area index, synoptic-scale meteorological reanalyses, and sea-surface temperature (SST). 

The meteorological module of TAPM predicts the finer-scale flow against a background of larger-scale meteorology 

supplied by the input synoptic-scale reanalyses (or forecasts). The dispersion module makes use of the predicted finer-scale 185 

meteorology and turbulence fields and comprises an Eulerian grid-based conservation equation for species concentration 

(Hurley et al., 2005). 

TAPM uses the synoptic-scale meteorological reanalyses given for horizontal winds, moisture and temperature and available 

from the U.S. NCEP (National Centers for Environmental Prediction) every 6 hours at a spatial resolution of 2.5° × 2.5° on 

several levels. 190 

We applied TAPM for the duration 1 July 2015 – 31 December 2016 by using two nested domains: 370 × 370 km2 with grid 

resolution 5 × 5 km2 and 1110 × 1110 km2 with grid resolution 15 × 15 km2. Both domains had 75 × 75 grid points and were 

centred on (150°4.5’ E, 26°35’ S), which is equivalent to 208.657 km east and 7056.383 km north in MGA. There were 25 

vertical levels, of which the lowest four were 10 m, 25 m, 50 m and 100 m AGL. 

The bottom-up inventory emissions lie within the inner model domain. In this model setup, each inventory emission grid cell 195 

(at 5 × 5 km2) was considered as an area source, apart from the emissions from the power stations which were taken as point 

sources together with specification of their stack heights and plume-rise parameters. For computational efficiency, rather 

than considering  all 14 emission categories plotted in Figure 2 as separate sources, we aggregated them into 9 sectors with 

each sector taken as a tracer source: Grazing cattle (Source 1); Feedlot, Piggeries and Poultry (Source 2); CSG Processing 

(Source 3); CSG Production (Source 4); Mining (Source 5); River seeps (Source 6); Domestic wood heating, Wastewater 200 

treatment and Motor vehicles (Source 7); Ground seeps and Landfill (Source 8); and Power stations (Source 9). The relative 

emissions (%) of the above nine Sources are 53.8, 25.8, 8.4, 1.1, 8.3, 0.21, 0.82, 1.2 and 0.37. 

https://doi.org/10.5194/acp-2020-337
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

4.2 Estimated background methane concentration 

Since the simulated methane does not include the background levels that are representative of methane emissions located 

outside the bottom-up inventory, we devised a method for estimating hourly varying background CH4 for each site involving 205 

concentrations under high atmospheric mixing conditions and the hourly standard deviation of concentration (see details in 

Supplement S3. The estimated background concentration can be either added to the simulated methane or subtracted from 

the observed methane. 

Figure 4 presents (green line) the estimated time series of the background CH4 concentration for Ironbark, showing a marked 

seasonal variation with a peak in September (early spring) and a minimum in February (late summer). To view the 210 

background variation with respect to the measured methane signal, we also present in Figure 4 as dot points the unfiltered 

hourly mean observations (clipped at 2100 ppb). The estimated background concentration time series for Burncluith looks 

very similar (not shown). The uncertainty in the background CH4 is 3.6 ppb and 3.3 ppb for Ironbark and Burncluith, 

respectively. The difference between the estimated background at Ironbark and that at Burncluith (purple line in Figure 4) is 

small and within ± 5 ppb. Any difference between the two backgrounds could be due to different sites in the study area 215 

getting impacted by different out-of-domain emissions depending on the transport meteorology. On average, the background 

concentration at Ironbark is greater by 1 ppb, and the standard deviation of the difference is 1.4 ppb. We take the average of 

the two background time series to represent the regional hourly background CH4 concentration, with an average uncertainty 

of 3.5 ppb. 

  220 
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Figure 4. Estimated hourly-averaged background CH4 concentration time series at Ironbark (green line), and the difference 
between the estimated backgrounds between Ironbark and Burncluith (purple line). The data points are the hourly mean 225 
measurements at Ironbark without any filtering (clipped at 2100 ppb to make the background concentration variation stand out 
better). 

 

4.3 Model performance for meteorology 

Accurate modelling of the flow field over our region of interest is important as it controls the atmospheric plume transport 230 

and dispersion which in turn influences the accuracy of prediction of CH4, and conversely the accuracy of inferred 

emissions. The hourly-averaged winds extracted from the model output for the inner nest at a height of 10 m were compared 

with the observations from the two monitoring stations for the duration of the simulation, with the missing data hours not 

considered. The details of the model performance for meteorology is given in Supplement S4. At both sites, the measured 

winds were most frequent from the north-east sector, with those at Burncluith being generally weaker in strength than those 235 

at Ironbark. As judged from the correlation coefficient (r) and index of agreement (IOA) values, the performance of TAPM 

for wind speed and wind direction was comparable to that obtained in other TAPM modelling studies. 
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4.4 Modelled methane compared to observations 

The hourly-averaged methane concentrations simulated for individual 9 source categories were aggregated and added to the 

estimated background concentration to compare with the observed, filtered CH4 concentrations.  240 

The scatter plots in Figure 5 comparing the modelled and observed CH4 at the two sites display a substantial  degree of 

scatter, which is not unusual for atmospheric transport and diffusion models driven by predicted meteorology and using 

hourly-averaged concentrations paired in both time and space (e.g. Luhar et al., 2008). While the correlation coefficient 

values of 0.57 and 0.74 for Ironbark and Burncluith, respectively, imply a reasonable model prediction, it is clear that the 

modelled levels are generally lower than the observations, particularly the higher-end concentrations at Ironbark. 245 

There could be various reasons for the differences between the modelled and observed methane, including uncertainty 

associated with the bottom-up emission inventory, its potential temporal variation, sources missing from the emission 

inventory, potential changes to the 2015 bottom-up inventory used here in the year 2016 (see Section 7.4), and uncertainty in 

the model’s ability to fully represent the atmospheric processes within the study domain. 

 250 

 

Figure 5. Hourly-averaged observed methane plotted against the simulated methane for the two monitoring stations. The solid line 
is the least-squares fit. 

 

The comparison in Figure 5 involving hourly methane paired in time and space enables a simple, yet stringent, validation 255 

check of a transport model, especially one that is driven by  turbulent flow fields predicted by a prognostic meteorological 

model instead of observations. A complementary but less stringent approach in validating air quality models is the quantile-

quantile (q-q) plot, which is a graphical technique for testing “goodness of fit” between two distributions. In such a plot, 

typically, sorted modelled concentrations are plotted against sorted observed values (i.e. unpaired in time) at a monitoring 

location (e.g., Venkatram et al., 2001; Luhar and Hurley, 2003; 260 

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm). If the two sets come from a population with the same 
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distribution, the data points should fall approximately along the 1:1 line. The principal advantage of a q-q plot is that a “good 

fit” is easy to recognize, and various distributional aspects, such as shape, tail behaviour and outliers, can be simultaneously 

examined. 

In the q-q plot in Figure 6 for Ironbark, the observed CH4 distribution is modelled well for measurements  < 1820 ppb, but 265 

for higher observed concentrations, which account for approximately 25% of the sample size, the modelled values are 

smaller  For Burncluith, the q-q plot shows a substantially better model performance, with the model underestimation of 

higher-end (> 1820 ppb) methane observations, which is approximately 10% of the sample size, much reduced compared to 

Ironbark. Overall, TAPM is largely predicting the observed CH4 distribution correctly, except for a relatively few higher-end 

concentrations. 270 

 

 
 

Figure 6. Q-q plot showing the sorted hourly-averaged observed CH4 concentrations versus the sorted modelled ones at Ironbark 
and Burncluith. The line of perfect agreement (dashed line) is also shown. 275 

 

4.5 Contribution to the modelled methane by various source categories 

The top four source categories based on their contribution to the modelled CH4 averaged over the study period at Ironbark 

were Source 1 (45%, Grazing cattle), Source 2 (25%, Feedlot, Piggeries and Poultry), Source 3 (19%, CSG Processing), and 

Source 5 (5.5%, Mining). These were the same at Burncluith, but with their respective contributions being 69%, 17%, 6.4% 280 

and 4.1%. The CSG Production (Source 4) contributions are 2.2% and 0.73%, respectively, at the two sites. 

In contrast, the largest four contributors to the top 5% of the simulated methane at Ironbark turn out to be Source 3 (35%), 

Source 2 (27%), Source 1 (25%) and Source 5 (7%). These at Burncluith are Source 1 (28%), Source 2 (25%), Source 3 
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(22%) and Source 5 (13%). The CSG Production (Source 4) contributes 3.8% and 2.5%, respectively, at the two sites. The 

Source 2 grouping is dominated by Feedlots. 285 

The CSG Processing (Source 3) emissions are localised near the two sites which result in methane spikes under favourable 

winds and thus contribute more to the higher-end modelled methane than to the overall average methane. In contrast, the 

simulation average methane is dominated by Sources 1 and 2 because concentration enhancements due to these sources 

occur under most wind conditions as a result of their very wide distribution across the region. 

5 Regional top-down, or inverse, modelling for emission estimation 290 

Given that the top-down emission inventory underestimates the observed methane in the Surat Basin, then one may ask what 

is the quantity and distribution of methane emissions that is implied by the methane concentration measurements at Ironbark 

and Burncluith? This is addressed by the inverse modelling approach for regional emissions formulated and applied below. 

5.1 Bayesian inverse modelling approach 

Our inverse model uses a Bayesian inference approach that incorporates, a source-receptor relationship, concentration 295 

measurements, and prior information on source parameters (i.e. source information obtained independently of the 

measurements) (Rao, 2007; Singh et al., 2015). The approach updates the source prior as concentration measurements are 

considered, and accounts for both model and observational uncertainties. 

Several applications using the Bayesian approach have previously been conducted for methane source estimation, including 

those at local scale (Yee and Flesch, 2010; Luhar et al., 2014; Feitz et al., 2018) and regional scale (Jeong et al., 2012; Miller 300 

et al., 2014; Henne et al., 2016; Cui et al., 2017). 

The approach hinges on Bayes’ theorem (Jaynes, 2003): 

 𝑝(𝐪|𝐜) = 𝑝(𝐜|𝐪) . 𝑝(𝐪)𝑝(𝐜) , (1) 

where the prior PDF 𝑝(𝐪)  reflects our knowledge of the source parameter vector 𝐪 prior to receiving the concentration 

observations 𝐜; 𝑝(𝐜|𝐪) is the likelihood function which is the probability of experiencing 𝐜 for a given 𝐪 and is typically 

obtained using a model-derived source-receptor linkage; the posterior 𝑝(𝐪|𝐜)   relates to the update of  𝑝(𝐪)   by its 305 

modulation by 𝑝(𝐜|𝐪) which contains the new information brought in by the concentration measurements 𝐜; and 𝑝(𝐜) 

[=∫ 𝑝(𝐜|𝐪)𝑝(𝐪)𝑑𝐪] is the evidence and is basically a normalisation constant in the present application (Yee and Flesch, 

2010). The likelihood function, also termed the source-receptor relationship, is derived using a transport and dispersion 

model. 
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It is assumed that the number of sources (Ns) and their locations ൫𝐱௦,ଵ, … , 𝐱௦,௝, … , 𝐱௦,ேೄ൯ where 𝐱௦,ଵ ≡ ൫𝑥௦,ଵ, 𝑦௦,ଵ, 𝑧௦,ଵ൯ are 310 

given a priori and the source emissions are non-zero. The emission rates of these sources are to be estimated, and these are 

represented by 𝐪 ≡ ൫𝑞ଵ, … , 𝑞௝, … , 𝑞ேೄ൯ with a total of 𝑁ௌ unknown emission rates. Assuming each source emission to be 

independent, the prior PDF can be written as: 

 𝑝(𝐪) = ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ . (2) 

Assuming that the model and measurement uncertainties are independent and distributed normally, the total likelihood of all 

c for a given hypothesis of q is calculated as (Yee, 2012) 315 

 𝑝(𝐜|𝐪) = ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ
ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (3) 

𝐜 ≡ ൫𝑐ଵ, … , 𝑐௜, … , 𝑐ே೘൯ , 𝑐௜  is the observed concentration at i-th instant (time and location), 𝑐௠,௜  is the corresponding 

modelled concentration for a given hypothesis of q, 𝜎௜ is the independent measurement error, 𝜎௠,௜ is the independent model 

error, 𝑁௠ is the number of concentration data (which can be time series from several independent monitors). 𝑐௠,௜ for all 

hypotheses, or possible values, for q is calculated and used in constructing the likelihood distribution 𝑝(𝐜|𝐪). Hence the 

posterior PDF for a given source hypothesis q is calculated as: 320 

 𝑝(𝐪|𝐜) = 1𝑍଴ ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ   ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ

ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (4) 

where 𝑍଴ is equivalent to 𝑝(𝐜) and is essentially a normalisation constant. The posterior yields probabilities of all emission 

rates (q) considered. 

The total modelled concentration at a given location 𝐱௥ and time is determined as  

 𝑐௠,௜ = ෍ 𝑐௠,௜௝.ேೞ
௝ୀଵ  (5) 

Because methane is treated as a passive tracer, the concentration field simulated for one rate of emission can be scaled 

linearly for another without the need to re-run the model. Thus 325 

 𝑐௠,௜௝ = 𝑞௝𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯, (6) 
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for each emission rate component of q. The quantity 𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯ is the source-receptor relationship or coupling coefficient 

and is equivalent to the modelled mean concentration at a given time and location 𝐱௥,௜ due to j-th source release at location 𝐱௦,௝ with a unit emission rate. 

In Eq. (4), in the absence of an informative prior, a uniform prior PDF can be used with the given limits (𝑞௠௔௫, 𝑞௠௜௡) 

 𝑝൫𝑞௝൯ = 1𝑞௠௔௫,௝ − 𝑞௠௜௡,௝, (7) 

with the probability being zero outside these bounds. 330 

If the prior is Gaussian, then 

 𝑝൫𝑞௝൯ = 1√2𝜋 𝜎௣,௝ exp ൝− ൫𝑞௝ − 𝑞௣,௝൯ଶ2𝜎௣,௝ଶ ൡ, (8) 

where 𝑞௣ and 𝜎௣ are the prior mean emission rate and its standard deviation, respectively. 

High dimensionality of the posterior makes its direct computation and the subsequent integration (the ‘brute-force’ method) 

over the source-parameter space very expensive or perhaps even impossible. For Gaussian priors and uncertainties, the 

posterior can be solved for the mean and variance with their analytical matrix forms (Tarantola, 2005; Jeong et al., 2012). To 335 

make the inverse approach more generally applicable and efficient, we use a Markov chain Monte Carlo (MCMC) technique 

incorporating the Metropolis-Hastings algorithm to sample the posterior PDF (Tarantola, 2005; Yee, 2012). With MCMC, 

non-Gaussian priors or uncertainties, or parameters with known physical constraints can also be included (Miller et al., 

2014). The normalization constant 𝑍଴ in Eq. (4) need not be known before MCMC samples can be drawn from the posterior 

PDF. This ability to generate a sample without knowing this constant of proportionality (which is often extremely difficult to 340 

compute) is a major feature of MCMC algorithms (Luhar et al., 2014). The frequency distribution of the MCMC-generated 

samples represents the posterior. 

The posterior PDF can be marginalized to obtain the mean emissions rate for each source as follows: 

 𝑞ത௝ = ∫ 𝑞௝  𝑝(𝐪|𝐜) 𝑑𝐪, (9) 

and likewise, the variance can also be determined. 

5.2 Construction of the hourly source-receptor relationship 345 

In order to use hourly measurements, the source-receptor relationship needs to be calculated every hour for every source 

(real or potential) location and every monitor location using either forward or backward transport modelling (Rao, 2007). 

Generally speaking, if the number of source locations under consideration is greater than the number of receptor locations 

(as for the present case) then the backward approach is much more computationally efficient (Luhar et al., 2014). 
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In the backward approach, source matter is tracked backwards in time from a monitor treated as a source. The value at a 350 

given point of the constructed backward concentration field is analogous to the magnitude of contribution made by an 

emitting source at that point to the true (i.e. forward) modelled concentration at the monitor. Hence, we can use a single 

backward source-receptor relationship distribution determined every hour to get the contribution made by each real or 

potential source located in the domain. This contrasts with the forward modelling approach in which each source location 

has to be considered as a unique, separate source and its dispersion computed for every hour. Essentially, the source-receptor 355 

relationship furnishes a way to chart the distribution of source potential within given geographical domain. However, it does 

not quantitatively allocate the real contribution of sources within the domain to the concentration levels detected at 

monitoring stations— this is done by the Bayesian inference (Eq. (4)). 

One backward approach for regional scale is to use backward trajectories constructed by only using three-dimensional winds 

computed from a meteorological model (e.g., Cheng et al., 1993). However, such wind trajectories only represent advective 360 

transport and do not account for turbulent mixing which causes a plume to disperse as it travels in the atmosphere. If 

measurements given at a high temporal resolution, e.g. hourly averages, are to be used for inversion it is necessary that the 

influence of atmospheric flow and dispersion processes that occur at such scales is considered. This can only be properly 

done by simulating backward tracer plumes which considers both advection and turbulent mixing.  

We modify TAPM to construct backward dispersing plumes. The Eulerian dispersion module in TAPM comprises a solution 365 

of the advection-diffusion equation for the ensemble mean concentration c, which for a passive species is (e.g. Yee et al., 

2008): 

 𝜕𝑐𝜕𝑡  + 𝐮ഥ . 𝛻𝑐 − 𝛻.  (𝐊 𝛻𝑐) = 𝑆, (10) 

in which the unknown turbulent flux terms are closed using the K-theory or gradient transport approach. The forcing term S 

represents species emissions. The elements of the eddy diffusivity tensor K are zero except along its main diagonal (Kx, Ky, 

Kz). The diffusion is assumed to be symmetric in the horizontal plane, so 𝐾௫ = 𝐾௬ = 𝐾ு (say). KH and Kz are determined 370 

using the modelled turbulent kinetic energy (TKE) and the TKE dissipation rate. 

The vertical component 𝑤ഥ  of the mean wind vector 𝐮ഥ (≡ 𝑢ത, 𝑣̅, 𝑤ഥ) in Eq. (10) is determined by using the continuity equation 

after the mean horizontal wind velocity components (𝑢ത, 𝑣̅) are calculated. 

The Eulerian adjoint of Eq. (10) describes the backward evolution of a scalar field (𝑐∗), and is also termed backward or retro 

plume, adjoint function, sensitivity function, or influence function, and is given as (Marchuk, 1995; Pudykiewicz, 1998; 375 

Hourdin and Talagrand, 2006; Yee et al., 2008) 

 − 𝜕𝑐∗𝜕𝑡 − 𝐮ഥ . 𝛻𝑐∗ − 𝛻. (𝐊 𝛻𝑐∗) = 𝑀, (11) 

https://doi.org/10.5194/acp-2020-337
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

where M is the forcing term representing the measurement distribution, which is treated as a source at the measurement (or 

receptor) location. 

The implementation of Eq. (11) in TAPM is done through changes in the forward model code as follows. The meteorological 

and turbulence fields calculated by the model at every hour (not hourly-averaged) are stored for the full simulation period. 380 

The modelled horizontal components (𝑢ത, 𝑣̅ ) of wind are reversed (i.e. by sign change). The (inverted) vertical wind 

component (𝑤ഥ) is then calculated by solving the continuity equation given the reversed horizontal wind components. The 

turbulence parameters remain the same. The diffusivities in the dispersion component are positive and do not have any 

correction for counter-gradient flux in the vertical, and, therefore, they were not modified for the backward mode. The two 

monitor locations were treated as separate ‘sources’ each having unit emission, and hourly-averaged plume dispersion fields 385 

due to these ‘sources’ was determined by running the TAPM dispersion module backwards in time for the entire simulation 

duration by using the reversed winds calculated previously. The meteorological and turbulence fields were linearly 

interpolated in time for dispersion calculations for model time steps lying between two successive hours. The resulting 

hourly-averaged backward concentration fields were used as the source-receptor relationship. Since we assume that all 

methane sources are located near the ground within the lowest model level (i.e. 10 m AGL), only the 10-m hourly source-390 

receptor relationship was required. 

One complexity with doing a backward dispersion calculation using one continuous release over the full simulation period 

over a large domain, as done here, is that the source-receptor field at a given hour is a superposition of plume footprints from 

the current hour as well as previous hours (typically up to 4–5 hours for the present domain size). So, there is a time history 

in the source-receptor field at a given time (whose influence becomes smaller and smaller as the distance between the source 395 

and the receptor becomes smaller, or the averaging time is increased, or when the winds are strong). However, this time 

history in a backward run corresponds to future hours in a forward run, so at a given hour there can be a time mismatch 

between the forward concentration at a grid point and the backward concentration at that point. One way to deal with this 

problem is to do a backward simulation for every hour separately; however, this is extremely expensive computationally. As 

a practical fix to this issue, at a particular backward travel hour (t) the plume travel time (tr) from the release point (i.e. the 400 

monitor location) to a grid point (x) is determined by releasing a second tracer ( 𝑐ଶ ) backwards from the monitor 

simultaneously with the main tracer (c = 𝑐ଵ) with the same tracer properties except that it decays exponentially with a decay 

rate of λ, so 

 𝑐ଶ (𝐱, 𝑡) = 𝑐ଵ (𝐱, 𝑡) exp(−𝜆𝑡௥), (12) 

which gives 

 𝑡௥ = 1𝜆 ln ቈ𝑐ଶ (𝐱, 𝑡)𝑐ଵ (𝐱, 𝑡)቉. (13) 
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The source-receptor value calculated at a grid point at a given backward travel hour (tb) is then taken to correspond to tb + tr 405 

(tr rounded to an hour). The corresponding forward travel hour for a grid point is then equal to the total hours in a simulation 

period minus (tb + tr). 

A modelled backward concentration field obtained for a unit emission rate is in essence the required source-receptor 

relationship which can be linearly scaled for any other emission rate. We use the hourly-averaged backward fields computed 

at the lowest model level (i.e. 10 m AGL) for the innermost model domain in our inverse methodology. 410 

As an example, Figure 7a presents the modelled backward concentration field (𝑐/𝑞, s m-3) due to a unit point release (𝑞 = 

1 g s-1) averaged over all hourly fields over the simulation period for Ironbark. Essentially, the value at any point in Figure 

7a is equivalent to the simulation-average forward model concentration value at this monitoring location if there were a 

source at that point with unit emission. Put differently, the backward concentration value at a given location represents the 

probability (including both frequency and intensity) a source emission at that location adds to the concentration at the 415 

monitoring site. The backward field is mainly determined by flow the field across the domain and the separation between the 

receptor and the source. 

 

 
       420 
Figure 7. Normalised modelled backward distribution of near-surface concentration (𝒄/𝒒, × 10-9 s m-3), which is an average over 
the entire study period: (a) Ironbark, and (b) Burncluith. 

 
It is apparent from Figure 7a that any sources located farther from the monitoring station would contribute less as plume 

concentrations decrease with increasing distances, and vice versa. The directional distribution of the backward field is also a 425 

function of the distribution of regional winds which determine how often the receptor is downwind of a source (see wind 

0.
1

0.2

0.
2

0.
3

0.
3

0.
5

1 2
3

5
10

15
20

N
or

th
in

g 
(M

G
A,

 k
m

)

0.
2

0.
2

0.3

0.
3

0.
3

0.
5

0.
5

1

2 1015

N
or

th
in

g 
(M

G
A,

 k
m

)

https://doi.org/10.5194/acp-2020-337
Preprint. Discussion started: 15 May 2020
c© Author(s) 2020. CC BY 4.0 License.



20 
 

roses in Figure S3). The values in the south-east and north-west corners of the study domain are particularly low, so potential 

sources there would, on average, have low probability of being sampled at Ironbark. 

The backward distribution for Burncluith (Figure 7b) is very similar, but since it is located north of Ironbark it would sample 

potential sources in the north-east better. 430 

The two monitoring sites combined sample most part of the CSG sources in the domain (which was the prime objective of 

our monitoring). 

5.3 Bayesian inversion setup 

The source array of 69 × 69 used in the forward modelling above is too large a source number for the inverse methodology 

to explore all the source possibilities (i.e. hypotheses), even with use of the MCMC sampling, and, moreover, there is only a 435 

limited amount of information available from only two monitoring sites. Consequently, an array of 11 × 11 sources (𝑁௦ =121, cell size ∼ 31 × 31 km2) is considered within the same model domain. The hourly source-receptor relationships 

calculated at 5 × 5 km2 resolution for Ironbark and Burncluith were used. We assume that all source emissions are time 

invariant during a given simulation period – this allows the utilisation of all valid hourly concentrations available during that 

period in a single Bayesian calculation to determine the emission rates. 440 

To reduce serial correlations in the sequence of MCMC samples drawn from the posterior using the Metropolis-Hastings 

algorithm, we only retained every 5th sample. The total number of useable samples was 21,000 for each source, of which the 

first 1,000 samples were discarded as “burn-in” samples. The selected samples were then used in the calculation of the 

source statistics. 

6 Inversion using ‘synthetic’ concentration data 445 

A ‘synthetic’ inverse run is first performed by using the simulated time series of concentration at Ironbark and Burncluith  

involving the bottom-up inventory (regridded to 11 × 11 sources, see Figure 8b) to investigate whether the inverse 

methodology is able to retrieve the bottom-up emissions and under what type of priors and their uncertainties. The given 

modelled (or synthetic) time series do not directly possess any background, instrumental, and model errors and, therefore, 

prove very useful in validating an inversion methodology. The results from an inversion of synthetic data can provide 450 

guidance about selection of the prior and its uncertainty specification for an inversion using real-world data.  

6.1 Selection of the prior 

Specifying the prior PDF 𝑝(𝐪) is an important step, even for the present synthetic case because we are still limited to the 

same degree of information available (i.e. the modelled concentration time series from only two sites), the number of 
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unknown sources to estimate, and the domain size as in the inversion case with the real concentration data considered 455 

subsequently. 

An identical Gaussian 𝑝(𝐪) for each source with a mean methane emission rate 𝑞௣ = 45.4 g s-1 (= 1.43 × 106 kg yr-1) per 

source is specified. This mean value is essentially the total bottom-up emission from the domain divided by the number of 

sources (i.e. 121). It is observed that a large prescribed uncertainty in the prior biases the posterior PDF towards emission 

rates that have high probability, and a small one biases it towards 𝑝(𝐪). As a balance between the two, it became evident that 460 

we needed to use a small value 𝜎௣ = 0.5% of the mean emission rate. 

The uncertainty in the transport model and that in the synthetic concentrations need to be specified. Both are essentially zero 

for the synthetic case, but we use a nominal value of 5% of the mean for the former and 0.3 ppb for the latter. All hourly 

synthetic concentrations modelled for the full simulation period at the two sites (i.e. 𝑁௠ = 2 × 13200) were used in one 

single Bayesian inversion to derive the emission rates.  465 

6.2 Results for the synthetic case 

The emission rates inferred by the inverse model are shown in Figure 8a, with the total emission being 162 × 106 kg yr-1, a 

figure very similar to the bottom-up inventory total 173 × 106 kg yr-1. 

A comparison of Figure 8a with the bottom-up inventory (Figure 8b) indicates  that the inverse model is able to simulate the  

large emission rate in the region located just north of the Ironbark site. There is a strong inventory emission on the eastern 470 

domain boundary which the model does not replicate. A possible reason for this is that the two monitoring stations do not 

sample this source area sufficiently. Extra monitoring stations and/or separate, narrower  priors for sources that make very 

small contributions to methane at the two sites would be needed to reduce the differences between Figure 8a and Figure 8b.  

The synthetic case results suggest that the regional inverse model formulated is stable, feasible with MCMC, and credible as 

evident from its getting the total emissions nearly right and replicating the largest emission area reasonably well with only a 475 

broad prior and two monitoring locations, but at the same time requiring a relatively small prior uncertainty. The synthetic 

case considered is an overly demanding case because the prior used is not very informative, compared to the real inversion 

cases considered in the next section in which the bottom-up inventory emissions allow the option of a better prior. 

 

 480 
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Figure 8. (a) Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the synthetic inversion, and (b) bottom-up inventory emission 
rates. 

7 Inversion using methane measurements 

The same filtered methane observations as used in the forward transport modelling (so 𝑁௠ = 10581) are used in one single 485 

Bayesian inverse run, with the uncertainty in the measurements σ = 3.5 ppb based on previous calculation and σm = 20% of 

the modelled concentration (Yee and Flesch, 2010; Luhar et al., 2014). 

7.1 Priors and inferred emissions 

Three cases involving different priors are considered. 

7.1.1 Non informative prior (Case 1) 490 

A case of virtually no prior, or uninformative prior, is first considered, in which the only constraint is that the emission rate 

for each source lies within the broad range 10–10,000 g s-1, where the upper limit is nearly double the total domain-wide 

bottom-up inventory. 

The inferred emissions (Figure 9a) between the two monitoring sites and around the centre of the region are qualitatively in 

accordance with the bottom-up inventory emissions (Figure 8b), but with larger magnitudes. In contrast, the inverse 495 

estimates in locations farther from these source areas are smaller than the inventory emissions. Remarkably, the total inferred 

emission with no prior is 162 × 106 kg yr-1 which compares well with the inventory total. The largest emission rate of about 

1100 g s-1 in Figure 9a is about 10% of the upper bound of the specified prior range. 
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 500 

Figure 9. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion: (a) with no prior (Case 1); and (b) with a Gaussian 
prior (Case 2). 

 

7.1.2 Uniform Gaussian prior (Case 2) 

Next, a more realistic prior PDF is specified with a Gaussian distribution having an identical mean of 45.4 g s-1 and 𝜎௣ = 505 

10% of the mean, for each source. The mean is the same as that is used for the synthetic run. 

The inferred emissions for this case shown in Figure 9b are qualitatively similar to Figure 9a; however, in the former the 

high emission sources are relatively less pronounced, with emissions from other source locations generally being larger. The 

total annual emission from the Surat Basin obtained using this inversion is 143 × 106 kg yr-1. 

7.1.3 Gaussian prior with the bottom-up inventory emissions (Case 3) 510 

In this case, the inventory emissions shown in Figure 8b are taken as the mean values of a Gaussian prior for each source.  

As every source prior now has a more realistic specification of the mean value compared Case 2, the uncertainty in the prior 

is chosen to be smaller than that specified in Case 2. 

The inferred emission rates in Figure 10a obtained for Case 3 with 𝜎௣ = 1% of the mean appear very similar to the inventory 

emission rates (Figure 8b). The fact that even the intense emission on the eastern boundary of the domain present in the 515 

inventory is mostly reproduced despite this area being not sampled relatively sufficiently by the two network locations 

means that the chosen prior with a very small uncertainty is somewhat too inflexible which forces the inversion towards a 

result that is very similar to the prior itself, thus in essence overriding the information inherent in the concentration 

observations. 
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 520 

   
 

Figure 10. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion with a Gaussian prior involving  mean values equal 
to the bottom-up  emissions (Figure 8b) and the standard deviation equal to (a) 1%, (b) 5% and (c) 3% of the mean values. 

 525 

Figure 10b is obtained using the same inverse model setup as Figure 10a, except that the prior is relaxed somewhat by 

increasing  𝜎௣ to 5% of the mean. This leads to the source areas in the centre of the Surat Basin and those between Ironbark 

and Burncluith becoming more conspicuous. In contrast, the source areas near the eastern boundary of the domain nearly 

fade, with the concentration observations applying greater influence in areas where the source-receptor relationship, shown 

in Figure 7, is stronger. Clearly, the inversion is sensitive to 𝜎௣ , however, it is apparent that 𝜎௣  = 1% to 5% yields a 530 

reasonable trade-off between the benefit of the inversion approaching the prior in areas where the chances of the two 

monitoring stations detecting methane signal is small and simultaneously making sure that the selected prior would not 

unduly overrule the information supplied by the concentration measurements. Consequently, another inversion was 

performed for  𝜎௣ = 3%. The inferred emission from this run presented in Figure 10c in essence stand between the inferred 

emissions for 𝜎௣ = 1% and those for 5%. This Case 3 inversion with 𝜎௣ = 3% is our best estimate, which gives an annual 535 

total CH4 emission of 166 × 106 kg yr-1. The fine tuning of prior uncertainty also has some trial and error component driven 

by the need that the inferred emissions are able to describe the measured concentrations when used in a forward model 

simulation (see Section 7.2).  

As noticed in the synthetic inversion case, and in Figure 10a and Figure 10b, a large prior uncertainty biases the inversion 

towards emission rates that have high probability, which may indicate that the number of monitoring stations is insufficient  540 

for the uncertainty in the prior to be relaxed. 

Figure 11 presents the difference between the inferred methane emissions given in Figure 10c and the bottom-up inventory 

emissions in Figure 8b. The largest difference is found for the grid box between Ironbark and Burncluith, with the inferred 

emissions (22.9 × 106 kg yr-1) being larger by approximately a factor of three than the latter (7.3 × 106 kg yr-1). The total 
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inventory emission for this source grid is controlled by CSG Processing (51%); feedlots, poultry and piggeries combined 545 

(32%); and CSG Production (6%) sectors. 

The calculated standard deviation of the inferred emissions corresponding to the case shown in Figure 10c is presented in 

Figure 11b. These values are approximately 1-2 orders of magnitude lower than the mean emission rates in Figure 10c. In 

general, the standard deviations are larger for larger inferred emissions. One reason as to why these uncertainties in the 

emission posterior are quite low, as discussed above, is the very small prescribed uncertainty that needs to be specified in the 550 

prior. Interestingly, the farthest grid point east of Ironbark has disproportionally large uncertainty compared to the mean 

emission rate in Figure 10c.  

 

     
 555 

Figure 11. (a) Difference between the inferred methane emissions (Figure 10c) and the bottom-up inventory emissions (kg yr-1 
gridbox-1), and (b) standard deviation (uncertainty) of the inferred emissions (kg yr-1 gridbox-1) presented in Figure 10c. 

7.1.4 Sensitivity to background methane 

Figure 4 shows that there is a slight difference in the estimated background CH4 levels between the two monitoring 

locations, with the Ironbark background methane larger by 1 ppb on average and the standard deviation of the background 560 

differences being 1.4 ppb, the latter is comparable to the background concentration uncertainty (= 3.5 ppb) considered in the 

inversion. 

We conducted an inverse modelling sensitivity test with the same model setup as that for Figure 10c, except that instead of 

using the background times series that was averaged over the two sites we used the respective background timeseries for 

these sites. The results were no different compared to Figure 10c, other than some insignificant changes in areas with low 565 

emissions. The annual emission total obtained was 164.8 × 106 kg yr-1.  
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7.2 Validation of the inverse emission estimates 

To examine to what extent the inferred emissions represent the methane concentration measurements compared to the 

bottom-up emissions, we conducted three separate forward transport model runs using the inferred emissions from the above 

inverse modelling Cases 1, 2, and 3 (i.e. Figure 9a, Figure 9b and Figure 10c, respectively). 570 

Figure 12a presents q-q plots of the observed data against the modelled CH4 computed using the Case 1 inferred emissions. 

There is an overestimation of methane at both monitoring stations for the higher-end concentrations, but the simulated CH4 

at Ironbark is much better reproduced than when using the bottom-up emissions (grey lines). For Burncluith, the 

overestimation is almost as large in magnitude as the underestimation obtained when the inventory emissions are used. 

As demonstrated by Figure 12b, the Case 2 inferred emissions involving a proper, but still crude, prior lead to a significant 575 

improvement in the methane simulation, especially at Burncluith. As apparent from Figure 12c, further refinement in the 

prior in Case 3 yields emission estimates that further improve the simulation of methane, especially at Ironbark. With the 

exception of about 4 outlying data points at the higher-end of the concentration distribution, the Case 3 inversion 

corresponding Figure 12c leads to the best model reproduction of the measured CH4 from the two monitoring sites. The 

underprediction seen when the inventory emissions are used is nearly eliminated. 580 

Clearly, differences between the model and observations remain, and the possible causes for that include differences between 

the observed and modelled regional meteorology, only two monitoring sites within a relatively large study domain, the 

selected 11 × 11 source distribution representing the emissions in the domain being rather coarse, and potential temporal 

variation of source emissions. 

 585 
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Figure 12. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the two monitoring stations. The 590 
modelled concentrations utilise emission estimates from (a) Case-1 inversion, (b) Case-2 inversion, and (c) Case-3 inversion (i.e. 
with 3% uncertainty in the prior). The forward model concentrations from Figure 6 predicted using the bottom-up emissions are 
shown as grey lines. Dashed line represents perfect agreement. 

7.3 Emissions from the CSG area 

Given the focus on CSG activity related emissions in the Surat Basin, we compare the aggregate bottom-up and inferred 595 

emissions from the CSG areas, many of which are concentrated near and between the two monitoring stations. The 

subdomain that includes all the CSG sources in the study area is shown Figure 13, which is an area of about 18260 km2 and 

covers 15% of the study domain. The CSG subdomain also contains emissions from other sectors (see Figure 3). 
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 600 

 
Figure 13. A subdomain of the study area that corresponds to all the CSG source areas (shaded grid cells) in the bottom-up 
emission inventory. It consists of 19 gridcells (each with a source footprint of 31 × 31 km2) and is considered for aggregating 
emission rates. 

 605 
The total bottom-up inventory emissions from the CSG sub-domain is 47.7 × 106 kg yr-1 (cf. 173.2 × 106 kg yr-1 for the 

domain) whereas that obtained using the inversion (Case 3, Figure 10c) is 63.6 × 106 kg yr-1 (cf. 165.8 × 106 kg yr-1 for the 

domain) which is 33% larger than the former. The total bottom-up emission for this subdomain is dominated by CSG 

(34.7%, of which 30.6% is due to CSG Processing), followed by grazing cattle (29.9%), feedlots (23.5%) and coal mines 

(7.7%), which together account for 95.8% of the emissions. Since the inverse methodology does not differentiate between 610 

source sectors, emissions from individual sectors cannot be inferred. Considering that the grazing cattle emissions are diffuse 

sources and thus not responsible for peaks in the measurements that dominate the inverse estimates, and since feedlots are 

scattered throughout the domain (Figure 3c) including the non-CSG areas from where there is no general inference of higher 

emissions, it is plausible that the increase in the inferred emissions would mainly correspond to CSG as the source sector. 

A considerable portion of the CSG emissions is in the area between the two monitoring stations. The inferred emissions in 615 

this area are much greater than the corresponding bottom-up inventory emissions. This area also has significant coal mining 

emissions nearby (Figure 3d). It is possible that the methane emissions from a combination of these two source sectors are 

much larger than the inventory emissions. 
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Apart from the uncertainties associated with the bottom-up emissions, potential methane emissions from some sources, 

namely wetlands (the amount of which in the area is very limited; https://wetlandinfo.des.qld.gov.au), land clearing, termites, 620 

material handling and fuel usage related to mining activities, ground-water wells, and biomass burning are not part of the 

bottom-up emissions. In contrast, all CH4 sources are implicitly represented in the inversions, apart from the biomass 

burning events which have been filtered using the CO filter. It is difficult to pinpoint which source sectors might be 

underrepresented in the bottom-up inventory without some kind of source discrimination, for instance, through the use of 

tracers such as the CH4 isotopes.  625 

7.4 Temporal variation of the inferred emission 

In the previous inverse calculations, all filtered methane measurements obtained during July 2015–December 2016 were 

combined in one Bayesian calculation to derive a time invariant top-down emission distribution. Here we apply the inverse 

model with the Case 3 settings (as used for Figure 10c) to 3-monthly measurement blocks within the above period in order to 

examine potential temporal variation of the inferred emissions. Obviously, for a 3-monthly simulation the amount of 630 

concentration data supplied to the Bayesian inversion is much less than that for the full simulation. Figure 14a presents the 3-

monthly variation of the inferred emissions as kg CH4 yr-1 (bar plots), along with the (constant) bottom-up inventory 

emissions (red line) and the (constant) inferred emissions from Case 3 (blue line). The 3-monthly emission rates are within 

165–180 kg yr-1 and are generally larger than when the full measurement duration is considered. This is because as the 

amount of information supplied to the inverse model reduces, the inferred emissions are not modulated to the same extent as 635 

that for the full period, and thus they tend to move closer to the bottom-up inventory which is used as a prior with a tight 

uncertainty. (Time-varying inventory emissions, if available, would act as a better prior, together with additional 

measurement sites). 

Figure 14b is the same as Figure 14a but for the CSG subdomain. The 3-monthly inferred emissions lie between the bottom-

up inventory value and the inferred value obtained when the measurements from the full period are used. Again, as in Figure 640 

14a, 3-monthly inferred emissions push towards the inventory value as the information supplied to the inverse model 

reduces. 

The temporal variations of inferred emissions in Figure 14a and Figure 14b are qualitatively similar. It is difficult to know 

whether these variations truly represent reality. Again, we conducted a forward TAPM run using the 3-monthly emissions 

from the above inversion, and the resulting q-q plots (red dots) are shown in Figure 15. The methane data at Burncluith are 645 

best described by these 3-monthly varying emissions compared to any other emission setup, but at Ironbark, these emissions 

underestimate the methane data (the inversion setup corresponding to Figure 12c best describes the Ironbark data).   

Additional measured parameters (e.g. tracers), as well as more monitoring stations and other additional data (e.g. about the 

prior), would be useful in further constraining the emissions. 

 650 
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Figure 14. Temporal variation of the inferred emissions (bar plots) for (a) the full study domain and (b) the CSG subdomain. The 
constant bottom-up inventory emissions (red line) and the constant inverse/inferred emissions from Case 3 (Figure 10c) are also 
shown. 

 655 

 

Figure 15. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the two monitoring stations. The 
modelled values (blue dots) are predicted using the emissions from Case-3 inversion (with 3% uncertainty in the prior); the red 
dots are produced from 3-monthly inversions; and the forward model concentrations from Figure 6 predicted using the bottom-up 
emissions are shown as grey lines. Dashed line represents perfect agreement. 660 

 
Given the rapid CSG development in the Surat Basin, one may deduce that the 2016 CSG methane emissions were larger 

than the 2015 bottom-up emissions and, therefore, could potentially explain the top-down emissions in the CSG area being 

higher than the inventory emissions. Figure 16 shows that compared to July–December 2015, the total CSG produced was 

higher by 32% during January–June 2016 and by 45% during July–December 2016 (which correlates with an increase in the 665 

number of CSG production wells in the area). However, notwithstanding the limited number of data available in deriving the 

top-down trend in Figure 14b and the 2015 bottom-up inventory used as the prior and assuming that the CSG area remains 

the same, this figure does not support any consistent increase in emissions from 2015 to 2016. As stated in Section 3, the 

main contributor to the total inventory CSG methane emissions was venting, followed by flaring. Figure 16 suggests that 
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although the amount of CSG produced steadily increased until 2017, the amount of venting/flaring does not show any such 670 

trend. As a matter of fact, overall, there is a decreasing trend in venting/flaring. Therefore, an increase in the amount of CSG 

produced may not necessarily mean that the methane emissions would have increased proportionally. Thus, the 33% higher 

top-down emission estimate from the CSG area compared to the inventory estimate cannot be explained in terms of the 

growth in the CSG production from 2015 to 2016. This also implies that the emissions from CSG may be more closely 

related to practices in the industry than to the amount of CSG produced. 675 

 
 

Figure 16. Six-monthly trends of the total CSG produced and the amount of flared/vented gas in the Surat Basin (data from 
https://www.data.qld.gov.au/dataset/petroleum-gas-production-and-reserve-statistics1). 

8 Conclusions 680 

This paper presents top-down and bottom-up quantification of gridded methane emissions from the CSG producing Surat 

Basin, an area of 350 × 350 km2 in Queensland, Australia. The 2015 bottom-up emission inventory served as a very useful 

prior in our regional top-down methodology based on a Bayesian inference approach that utilised hourly-mean CH4 

concentrations monitored at the Ironbark and Burncluith stations for 1.5 years, hourly source-receptor relationship, and an 

MCMC technique for posterior PDF sampling. 685 

The largest contribution to the emissions in the bottom-up methane inventory is from grazing cattle (∼50%), cattle feedlots 

(∼25%), and CSG processing (∼8%), with the aggregate emissions in the study area being approximately 173 × 106 kg CH4 

 
1 This data file places the gas fields of Spring Gully and Peat within the Bowen Basin whereas in our bottom-inventory these 
are part of the Surat Basin. This is because of how the gas field zones and basin boundaries are defined. The gas fields 
included in our study are based on their geographic locations relative to the square study domain selected. Adding these two 
gas fields to the Surat Basin does not change the trends shown in Figure 16. 
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yr-1. Although the forward transport modelling with the bottom-up emissions yielded a credible simulation of the suitably 

filtered observed methane concentrations, about 15% of the higher-end concentration observations were underestimated. 

The top-down Bayesian inverse approach demonstrated that even when we do not specify an informative prior, the source 690 

signal inherent in the methane observations from only two sites constrains the total emission well. But, in contrast to the 

inventory emissions, the inferred emissions are more intensely located in the centre of the study region and less in regions 

that are farther. The importance of specifying a suitable prior in the Bayesian inference was apparent, with the bottom-up 

inventory proving very valuable for that purpose. Particularly, a Gaussian prior having mean values taken the same as the 

bottom-up emissions with an uncertainty equal to 3% of the mean yielded the best emission distribution, as evident from its 695 

performance in faithfully reproducing the measured methane concentration timeseries. This inverse setup yielded a domain-

wide emission of 166 × 106 kg CH4 yr-1 which is very slightly less than the one obtained from the bottom-up inventory. 

However, within a subdomain covering all the CSG source areas, the inferred emissions are 33% larger than those deduced 

from the bottom-up inventory. The dominant localised inventory emissions in this area are from CSG, followed by feedlots. 

Since feedlots are scattered throughout the domain including the non-CSG areas from where there is no inference of higher 700 

emissions, it is plausible that the increase in the inferred emissions would mainly correspond to CSG as the source sector. 

The source-receptor relationship showed that having only two monitoring stations is inadequate for sampling distant source 

areas within the large study domain, especially areas in the south-east and north-west corners (the network design for the two 

monitoring stations mainly focused on the central CSG regions). Lengthening the measurement period to sample these areas 

better would not have helped because the wind climatology of the area is not likely to change considerably. When source 705 

areas are not sampled well, one may impose stricter priors that are more credible than the inferred emissions, or alternatively 

increase the number of stations. The former strategy is probably reflected in our use of a small uncertainty in the prior (i.e. 

3% of the mean) for the best inversion case. A smaller prior uncertainty pushes the inversion more towards the prior itself 

with distant source areas not sampled sufficiently by the network sites looking like the prior distribution. A larger prior 

uncertainty results in the inversion moving towards higher emissions for sources that are close to the monitoring stations. 710 

The inverse methodology could not distinguish between different source categories, mainly because the concentration of 

methane alone was monitored and not tracers specific to methane source types. To do source discrimination and attribution, 

monitoring of tracer species such as methane isotopes (13CH4, CH3D and 14CH4), or other hydrocarbons in cases where they 

are associated with the source gas, would prove useful when suitable sampling systems or instrumentation for field 

deployment become available. 715 

Data availability 

The data and model output included in this paper can be made available by contacting the corresponding author (Ashok 
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